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I. Introduction

Ibogaine, is a naturally occurring, psychoactive indole alkaloid derived from
the roots of the rain forest shrub Tabernanthe iboga. Indigenous peoples of
Western Africa use ibogaine in low doses to combat fatigue, hunger, and thirst,
and in higher doses as a sacrament in religious rituals (1). The use of ibogaine for
the treatment of drug dependence has been based on anecdotal reports from
groups of self-treating addicts that the drug blocked opiate withdrawal and
reduced craving for opiates and other illicit drugs for extended time periods (2-
4). Preclinical studies have supported these claims and provided proof-of-concept
in morphine-dependent rats (5,6). While ibogaine has diverse CNS effects, the
pharmacological targets underlying the physiological and psychological actions
of ibogaine in general, or its effects on opiate withdrawal in particular, are not
fully understood. Pharmacological treatments for heroin addiction currently
employ two treatment strategies: detoxification followed by drug-free abstinence
or maintenance treatment with an opioid agonist. Because agonist maintenance
with methadone usually has the goal of eventual detoxification to a drug-free
state, the use of medications to facilitate this transition is a clinically important
treatment strategy. Anecdotal reports suggest that ibogaine has promise as an
alternative medication approach for making this transition (4). Ibogaine has an
added benefit to other detoxification strategies in that the treatment experience
seems to bolster the patient’s own motivational resources for change.

There have been few reports of the effects of ibogaine in humans. Anecdotal
accounts of the acute and long-term effects of ibogaine have included only a
small series of case reports from opiate and cocaine addicts with observations
provided for only seven and four subjects, respectively (2,3). A retrospective case
review of 33 ibogaine treatments for opioid detoxification in nonmedical settings
under open label conditions has suggested further that the alkaloid has amelio-
rative effects in acute opioid withdrawal (4). However, objective investigations of
ibogaine’s effects on drug craving, and the signs and symptoms of opiate
withdrawal, have not been done in either research or conventional treatment
settings. Ibogaine is a drug with complex pharmacokinetics and an uncertain
mechanism of action with regards to its alleged efficacy for the treatment of
opiate dependence. Ibogaine is metabolized to noribogaine, which has a pharma-
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cological profile that is different from that of the parent drug. We report here that
ibogaine is effective in blocking opiate withdrawal, providing an alternative
approach for opiate-dependent patients who have failed other conventional
treatments. Identifying noribogaine’s mechanism of action may explain how
ibogaine promotes rapid detoxification from opiates after only a single dose.

II. Identification of a Primary Metabolite
of Ibogaine

Our group developed an analytical method for quantifying ibogaine in blood
samples from rats, primates, and humans (7,8). Using fullscan electron impact
gas chromatography/mass spectrometry (GC/MS), a primary metabolite, 12-
hydroxyibogamine (noribogaine) was detected for the first time in blood and
urine samples. The analytical procedure involved a solvent extraction under basic
conditions with D3-ibogaine as an internal standard. Urines taken from dosed
monkeys and humans were extracted under strongly basic conditions, extracts
were evaporated, reconstituted, and analyzed by GC/MS in full scan electron
impact ionization mode. Analysis of the resulting total ion chromatograms
revealed a peak identified as ibogaine by comparison with an authentic standard.
All samples were found to contain a second major component eluting after
ibogaine. Similar spectral characteristics of this peak to ibogaine’s spectrum
defined it as an ibogaine metabolite, which is formed by the loss of a methyl
group (Figure 1). The site for metabolic demethylation of ibogaine was the
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Figure 1. Molecular structures of ibogaine and noribogaine. Ibogaine undergoes O-demethylation to
form 12-hydroxyibogamine (noribogaine).



methoxy group, resulting in the compound 12-hydroxyibogamine (noribogaine).
The identity of the desmethyl metabolite was confirmed using an authentic
standard of noribogaine (Omnichem S.A., Belgium) and gave a single peak at the
same retention time and with the same electron impact fragmentation pattern as
the endogenous compound isolated from monkey and human urine (7).

III. Cytochrome P450 Metabolism and
Genetic Polymorphisms

Ibogaine, like most CNS drugs, is highly lipophilic and is subject to extensive
biotransformation. Ibogaine is metabolized to noribogaine in the gut wall and
liver (Figure 2, schematic). Ibogaine is O-demethylated to noribogaine primarily
by cytochrome P4502D6 (CYP2D6). An enzyme kinetic examination of ibogaine
O-demethylase activity in pooled human liver microsomes suggested that two (or
more) enzymes are involved in this reaction (8). In this study, ibogaine was
incubated with a set of microsomes derived from cell lines selectively expressing
only one human cytochrome P450 enzyme and with a series of human liver
microsome preparations, characterized with respect to their activities toward
cytochrome P450 enzyme selective substrates to estimate the relative contri-
butions of the various P450 enzymes to the metabolism of ibogaine in vitro. The
enzyme CYP2D6 showed the highest activity toward the formation of
noribogaine, followed by CYP2C9 and CYP3A4 (9).

Depending on whether a particular isoenzyme is present or absent, individuals
are classified as extensive or poor metabolizers. The influence of genetic
polymorphisms on the biotransformation of ibogaine under in vivo clinical
conditions has been examined in recent studies (9). The results demonstrate that
there are statistically significant differences in the two populations with regard to
Cmax and t1/2 (elim) and area under the curve (AUC) of the parent drug and
metabolite, indicating that the disposition of ibogaine is dependent on
polymorphic CYP2D6 distribution (Table 1). Since some of the CNS activity may
be the result of noribogaine, the CYP2D6 phenotype may prove to be an
important determinant in the clinical pharmacology of ibogaine. Many CYP2D6
substrates are subject to drug interactions. In considering the potential patient
population who might benefit from ibogaine, many of these patients may have
taken other medications (prescription and/or illicit), increasing the potential for
serious adverse drug interactions.
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Figure 2. Time course of whole blood concentrations of ibogaine and noribogaine after oral adminis-
tration to drug-dependent volunteer. Pharmacokinetics of ibogaine and noribogaine over the first 24
hours after oral dose in a human subject. Data shown are from a representative male subject (wt/wt,
extensive metabolizer). Values for parent drug and desmethyl metabolite were measured in whole
blood samples at the times indicated. Open squares indicate ibogaine concentrations and shaded
squares indicate noribogaine concentrations. SK, St. Kitts, W.I., Subject Code.

TABLE 1.
Pharmacokinetic Parameters of Ibogaine and Noribogaine in

Human Extensive and Poor Metabolizers (CYP2D6)

*Extensive Metabolizers **Poor Metabolizers

Ibogaine
tmax,hr 1.70 ± 0.15 2.50 ± 1.04
Cmax,ng/ml 737 ± 76 896 ± 166
AUC0-24hr,ng • hr/ml 3936 ± 556 11471 ± 414
t1/2,hr 7.45 ± 0.81 NQ

Noribogaine
tmax,hr 6.17 ± 0.85 3.17 ± 1.36
Cmax,ng/ml 949 ± 67 105 ± 30
AUC0-24hr,ng • hr/ml 14705 ± 1024 3648 ± 435
t1/2,hr NQ NQ

* N = 24 (10.0 mg/kg), 16 males and 8 females
** N = 3, 3 males (10.0 mg/kg)



IV. Ibogaine Pharmacokinetics

Pharmacokinetic measurements have been obtained from human drug-
dependent patient volunteers who had received single oral doses of ibogaine
(Table 1; Figure 2). Figure 2 illustrates the pharmacokinetic profile of ibogaine
and the metabolite following oral doses of the drug in a representative male
subject. Table 1 shows that CYP2D6 mediated metabolism of ibogaine resulted
in high levels of noribogaine in blood, with Cmax values in the same range as the
parent drug. The time required to eliminate the majority of absorbed ibogaine
(>90%) was 24 hours post-dose (Figure 2). The pharmacokinetic profiles
measured in whole blood demonstrate that the concentrations of noribogaine
measured at 24 hours remained elevated, in agreement with previous findings
(10). The still elevated concentrations of noribogaine in blood at 24 hours after
drug administration limited the quantitation of the terminal half-life of the
metabolite. Noribogaine was measured in CYP2D6 deficient subjects, but at
concentrations that were markedly lower than for the extensive metabolizers.
Conversion of the parent to noribogaine in CYP2D6 deficient subjects may reflect
the metabolic contribution of other cytochromes (CYP2C9, CYP3A4). The
concentration of noribogaine measured at 24 hours post-dose in the subject in
Figure 2 was in the range of 800 ng/ml, similar to the peak concentration of
ibogaine that was measured in this representative subject. Pharmacokinetic
measurements in human volunteers administered oral doses of ibogaine showed
that the area under the curve (AUC) for the parent compound was approximately
three-fold less than for the active metabolite (Table 1). Thus, noribogaine reaches
sustained high levels in blood after a single administration of the parent drug.

Since the metabolite has been shown in radioligand binding assays to have
higher affinities for certain CNS targets, it can be estimated that the contribution
of the metabolite to the total pharmacodynamic profile of ibogaine is significant.
To display in vivo activity, it is necessary for CNS drugs to reach the brain. Since
it is difficult to study these processes in humans, it is common to study the
penetration of a CNS active drug into the brains of laboratory animals. The
concentrations of ibogaine and noribogaine have been measured in rat brain
following both oral and intraperitoneal (i.p.) administrations (11,12). The signif-
icance of micromolar interactions of ibogaine and noribogaine with various
radioligand binding sites was related to the concentration of parent drug and
metabolite in brain (Table 2). Regional brain levels of ibogaine and noribogaine
were measured in rat cerebral cortex, striatum, brainstem, and cerebellum at 15
minutes, 1 and 2 hours postdrug administration. We have shown that ibogaine is
rapidly detected in brain following oral administration. The metabolite was
detected at the earliest time point (15 minutes), consistent with first pass
metabolism of the parent drug (11). Administration of ibogaine (40 mg/kg i.p., 50
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mg/kg p.o.) in rodents resulted in levels of ibogaine and noribogaine that ranged
from 10 to 15 µM and 10 to 12 µM, respectively. The results demonstrate that
noribogaine reaches significant concentrations in brain following both routes of
administration in rodents. Thus, the concentrations of noribogaine in brain may
activate processes that cause the desired effects of suppressing opiate withdrawal
signs and diminishing drug craving.

V. Setting and Study Design

We have had the opportunity to describe the clinical experience of a series of
patients undergoing opiate detoxification with ibogaine. The study was conducted
in a 12 bed freestanding facility in St. Kitts, West Indies. The treatment program
had a planned duration of 12 to 14 days and stated goals of: (1) safe physical
detoxification from opiates, (2) motivational counseling, and (3) referral to
aftercare programs and community support groups (twelve-step programs).
Subjects were self-referred for inpatient detoxification from opiates (heroin or
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TABLE 2.
Pharmacokinetic Parameters of Ibogaine and Noribogaine in

Male Rat (Sprague-Dawley)

*Whole Blood *Brain **Brain
40 mg/kg i.p. 40 mg/kg i.p. 50 mg/kg p.o.

Ibogaine
tmax,hr 0.10 ± 0.03 1.00 ± 0.14 1.00 ± 0.21
Cmax,ng/ml or 3859 ± 789 3782 ± 418 5210 ± 480
ng/g [µM] [11.2 ± 2.3] [11.0 ± 1.2] [15.1 ± 1.4]
AUC, ng • hr/ml or 10636 ± 341 22098 ± 922 NQ
ng/g [µM • hr] [30.7 ± 1.0] [63.9 ± 2.7]
t1/2,hr 2.38 ± 0.50 11.05 ± 1.15 NQ

Noribogaine
tmax,hr 2.40 ± 0.04 2.00 ± 0.16 2.00 ± 0.28
Cmax,ng/ml or 7265 ± 953 3236 ± 514 3741 ± 423
ng/g [µM] [21.9 ± 2.9] [9.8 ± 1.6] [11.3 ± 1.3]
AUC, ng • hr/ml or 96920 ± 741 38797 ± 324 NQ
ng/g [µM • hr] [292.0 ± 2.2] [117.9 ± 1.0]

NQ, not quantifiable
Noribogaine t1/2 not quantifiable
* Noncompartmental pharmacokinetic analysis over a 24 hr. period
** Noncompartmental pharmacokinetic analysis over a 2 hr. period
Data represent the average values from individual animals (n = 4) assayed in duplicate.



methadone) and met inclusion/exclusion criteria. All individuals were deemed fit
and underwent treatment following a physician’s review of the history and
physical examination. Participants did not have histories of stroke, epilepsy, or
axis I psychotic disorders. Results of the electrocardiogram and clinical
laboratory testing were within predetermined limits. All subjects signed an
informed consent for ibogaine treatment. Overall, the sample of 32 patients was
predominately male (69%) and white (82%), with a mean age of 33.6 years and
a mean length of addiction of 11.1 years.

All participants met DSM-IV criteria for opioid dependence and had positive
urine screens at entry to the study. Participants were assigned to fixed-dose (800
mg; 10 mg/kg) of ibogaine HCl under open-label conditions. Subjects were
genotypyed for the CYP2D6 alleles (*2, *4, *5 and wt alleles), as described
previously (13). On admission, participants were administered the Addiction
Severity Index (14) and received structured psychiatric evaluations before and
after ibogaine treatment (SCID I and II). In cases where the participant’s
responses were deemed questionable due to intoxication or withdrawal signs,
portions of all interviews were repeated later, as necessary. Additional
information about substance use history and past/current medical condition(s)
was gathered and later cross-referenced for accuracy through a separate compre-
hensive psychosocial assessment.

VI. Physician Ratings of Withdrawal

Two physicians rated as present or absent 13 physical signs typically
associated with opiate withdrawal, based on a 10-minute period of observation
(14,15). The Objective Opiate Withdrawal Scale (OOWS) data were analyzed
from three assessments performed during the period spent in the clinic under
medical monitoring, given that those points in relation to ibogaine administration
were highly comparable among all patients. The attending physician performed
the first assessment following clinic admission an average of 1 hour before
ibogaine administration and 12 hours after the last dose of opiate. A psychiatrist
without knowledge of the admitting OOWS score performed the second
assessment an average of 10 to 12 hours after ibogaine administration and 24
hours after the last opiate dose. The attending physician performed the third
assessment 24 hours following ibogaine administration and 36 hours after the last
opiate dose. Physician’s ratings were subjected to repeated measures analysis of
variance (ANOVA) with treatment phase (pre-ibogaine, post-ibogaine, and
program discharge) as the within-subjects factor.
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VII. Subjects’ Self-Report of Withdrawal Symptoms

The Opiate-Symptom Checklist (OP-SCL) was developed for the present study
as a subtle assessment of withdrawal symptoms, given that many subjects’ verbal
reports about withdrawal experience were generally exaggerated, both in number
and severity of symptoms. Each of the 13 items that comprises the OP-SCL scale
were taken from the Hopkins Symptom Checklist-90, with the criteria for
selection based on whether it appeared in two other self-report withdrawal
questionnaires, the Addiction Research Center Inventory (16) and the Subjective
Opiate Withdrawal (17) scales. Subjects also completed a series of standardized
self-report instruments relating to mood and craving at three different time points
during the study within 7 to 10 days after the last dose of opiate. Subjects were
asked to provide ratings of their current level of craving for opiates using
questions from the Heroin Craving Questionnaire (HCQN-29) (18). Self-reported
depressive symptoms were determined by the Beck Depression Inventory (BDI)
(19). Subjects’ scores were subjected to repeated measures analyses of variance
across treatment phase (pre-ibogaine, post-ibogaine, and discharge) as the within-
subjects factor for the total score from the OP-SCL, BDI, and the HCQN-29.

VIII. Acute Detoxification and Behavioral Outcomes

Physical dependence on opiates is characterized by a distinctive pattern of
signs and symptoms that make up the naturalistic withdrawal syndrome. The
physical dependence produced by an opiate is assessed usually by discontinuation
of opioid treatment (spontaneous withdrawal) or by antagonist-precipitated
withdrawal. All of the subjects identified opiates as one of the primary reasons for
seeking ibogaine treatment and demonstrated active dependence by clinical
evaluation, objective observations, and positive urine screen. Physician ratings
demonstrate that ibogaine administration brings about a rapid detoxification from
heroin and methadone (Figure 3A). The post-ibogaine OOWS rating obtained 10
to 12 hours after ibogaine administration and 24 hours following the last opiate
dose was significantly lower than the rating obtained 1 hour prior to ibogaine
administration and 12 hours after the last opiate dose. At 24 hours after ibogaine
administration and 36 hours after the last opiate dose, the OOWS rating was
significantly lower than the pre-ibogaine rating. The blinded post-ibogaine
ratings between doctors agreed well item for item and were not significantly
different from one another in terms of the mean total OOWS score (mean ± 1 SD,
N = 32). These objective measures demonstrate the effects of ibogaine on opiate
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withdrawal assessed in this study. Objective signs of opiate withdrawal were
rarely seen and none were exacerbated at later time points. The results suggest
that ibogaine provided a safe and effective treatment for withdrawal from heroin
and methadone. The acute withdrawal syndrome in addicts dependent on heroin
begins approximately 8 hours after the last heroin dose, peaks in intensity at 1 to
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Figure 3. Scores on the Objective Opiate Withdrawal Scale. (a) The effects of single-dose
ibogaine treatment on opiate withdrawal signs at three physician-rated assessment times (12, 24, and
36 hours after the last dose of opiate). Average data are shown (mean ± 1 SD, N = 32). *P < .05. (b)
The effects of single-dose ibogaine on patients self-report Opiate-Symptom Checklist (OP-SCL). The
OP-SCL was developed for the present study as a subtle assessment of patients’ subjective complaints
based on 13 items selected from the Hopkins Symptom Checklist rated for intensity from 0 to 4. The
maximum score attainable for the OP-SCL was 42.
* p < .05.



2 days, and subjective symptoms subside within 7 to 10 days. Self-reports of
withdrawal symptoms shortly after recovery from ibogaine treatment (< 72
hours) were significantly decreased from the pre-ibogaine rating obtained 12
hours after the last use of opiates and were comparable to the level of discomfort
reported at program discharge approximately one week later (Figure 3B). Thus,
for subjects undergoing ibogaine detoxification, all of the subjects were
successful during the detoxification process and many were able to maintain
abstinence from illicit opiates and methadone over the months following detoxi-
fication (data not shown). Perhaps the most important observation was the ability
of a single dose of ibogaine to promote a rapid detoxification from methadone
without a gradual taper of the opiate. These preliminary observations of ibogaine
treatment suggest that methadone withdrawal was not more difficult than heroin
withdrawal following ibogaine detoxification. As discussed below, we suggest
that the long-acting metabolite noribogaine may account for the efficacy of
ibogaine treatment for both heroin and methadone withdrawal.

Craving is thought to be an important symptom contributing to continued drug
use by addicts. Opiate-dependent subjects report increased drug craving during
the early stages of withdrawal (20). We have previously reported that subjects
undergoing opiate detoxification reported significantly decreased drug craving for
opiates on five measures taken from the HCQN-29 scales at 36 hours
posttreatment. These five measures inquired about specific aspects of drug
craving, including urges, as well as thoughts about drug of choice or plans to use
the drug. Questions are asked also about the positive reinforcing effects of the
drug or the expectation of the outcome from using a drug of choice or the
alleviation of withdrawal states. Perceived lack of control over drug use was
included, since it is a common feature of substance-abuse disorders and is most
operative under conditions of active use, relapse, or for subjects at high risk. The
results demonstrated that across craving measures, the mean scores remained
significantly decreased at program discharge (10). BDI scores were also signifi-
cantly reduced both at program discharge and at 1-month follow-up assessments
(10). Heroin craving is known to be dramatically reduced depending on the lack
of availability of the abused drug in a controlled setting. Thus, more meaningful
studies of ibogaine’s ability to suppress heroin craving require further investi-
gations done under naturalistic conditions.

IX. Cardiovascular Changes and Side Effects of Ibogaine

Ibogaine has a variety of dose-dependent pharmacological actions, which may
not be relevant to its effectiveness for opiate detoxification and diminished drug
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cravings, but may influence considerations for safety. However, toxicological
studies in primates have demonstrated previously that ibogaine administration at
doses recommended for opiate detoxification is safe (21). The FDA Phase I
Pharmacokinetic and Safety investigations by our group have not advanced in the
United States due to a lack of funds to support clinical investigations of ibogaine
in patient volunteers. However, we have had the opportunity to obtain additional
safety data in drug-dependent subjects under controlled conditions in human
studies conducted in St. Kitts, West Indies. For these subjects, baseline screening
included a medical evaluation, physical examination, electrocardiogram, blood
chemistries, and hematological workup, as well as psychiatric and chemical
dependency evaluations. In some cases, more extensive evaluations were done to
rule out cardiac risk factors and to exclude subjects for entry to the study. The
recognition of the cardiovascular actions of ibogaine date back to the 1950s,
when the CIBA Pharmaceutical Company investigated ibogaine as an antihyper-
tensive agent. Ibogaine at doses used for opiate detoxification may lower blood
pressure and heart rate when the drug reaches peak concentrations in blood. In
contrast, the opiate withdrawal syndrome is associated with increases in pulse,
systolic and diastolic blood pressures, and respiratory rate.

Our observations of the safety of ibogaine have not been limited to opiate-
dependent subjects. To date, we have evaluated ibogaine’s safety in more than
150 drug-dependent subjects that were assigned to one of three fixed-dose
treatments under open label conditions: 8, 10, or 12 mg/kg ibogaine. Adverse
effects were assessed by clinician side-effect ratings and open-ended query. To
date, no significant adverse events were seen under these study conditions. The
most frequent side effects observed were nausea and mild tremor and ataxia at
early time points after drug administration. Random regression of vital signs
(respiration rate, systolic and diastolic blood pressures, and pulse) revealed no
significant changes across time or by treatment condition for opiate-dependent
subjects. However, a hypotensive response to ibogaine was observed in some
cocaine-dependent subjects, which required close monitoring of blood pressure
and which was responsive to volume repletion. Comparison of pre- and postdrug
effects demonstrated that blood cell count, neurotrophil levels, and sodium and
potassium levels were in the normal range. There were no significant changes
from baseline seen on liver function tests. No episodes of psychosis or major
affective disorder were detected at posttreatment evaluations. Intensive cardiac
monitoring demonstrated that no electrocardiographic abnormalities were
produced or exaggerated following ibogaine administration in subjects that were
not comorbid for any cardiovascular risk factors. These preliminary results
demonstrate that single doses of ibogaine were well tolerated in drug-dependent
subjects. These preliminary observations are encouraging, but they do not
diminish the possibility that ibogaine may have other medical risks not ordinarily
associated with opiate withdrawal or with the use of tapering doses of methadone.
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However, we anticipate, based on our clinical experience from offshore studies,
that any potential adverse cardiovascular responses can be well managed within
routine clinical practice.

X. Mechanism of Action

While the precise mechanism(s) underlying the expression of opiate
withdrawal signs and symptoms are not fully understood, and may be different
between humans and laboratory animals, the cellular and behavioral changes
resulting from withdrawal and that have motivational relevance to drug-seeking
behavior may involve the same neural circuits as those that participate in opiate
dependence. Ibogaine and its active metabolite noribogaine act on a number of
different neurotransmitter systems in the brain that may contribute to ibogaine’s
ability to suppress the autonomic changes, objective signs, and subjective distress
associated with opiate withdrawal. However, we have speculated that the actions
of noribogaine at mu-opioid receptors may account in part for ibogaine’s ability
to reduce withdrawal symptoms in opiate-dependent humans (22). For example,
the desmethyl metabolite noribogaine has been shown to be a full agonist at the
mu-opioid receptor (Table 3). This pharmacological activity, coupled with the
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TABLE 3.
Inhibitory Potency of Ibogaine and Noribogaine

Ibogaine Noribogaine Pharmacodynamic
IC50(µM) nh IC50(µM) nh Action

Serotonergic
5-HT Transporter 0.59 ± 0.09 0.8 0.04 ± 0.01 0.76 Reuptake
(RTI-55) Blocker

Opioidergic
Mu (DAMGO) 11.0 ± 0. 9 1.0 0.16 ± 0.01 0.99 Agonist
Kappa 1 25.0 ± 0.6 1.1 4.2 ± 0.3 1.05 Partial
(U69593) Agonist (?)
Kappa 2 23.8 ± 7.1 1.0 92.3 ± 9.2 1.03 Partial
(IOXY) Agonist (?)

Glutaminergic
NMDA 5.2 ± 0.2 0.9 31.4 ± 5.4 1.1 Channel
(MK-801) Blocker

The values represent the mean ± SE of the IC50 value (µM) from 3-4 independent experiments, each performed
in triplicate. nh, Hill slope



long duration of action may produce a self-taper effect in opiate-dependent
patients.

The relative contributions of the parent and metabolite to the pharmaco-
dynamic effects have yet to be established with precise certainty. Results from
animal studies indicate that opiate withdrawal is associated with hyperactivity of
the noradrenergic system and with changes in a variety of other neurotransmitter
systems (23). Pharmacological agents may have differential effects on different
components of opiate withdrawal. In addition to affecting mu-opioid receptors in
the brain, noribogaine also has affinity at kappa-opioid receptors and the
serotonin transporter (8). Indirect serotonergic agonists have been shown to
attenuate neuronal opiate withdrawal (24). The 5-HT releaser d-fenfluramine and
the 5-HT reuptake blockers fluoxetine and sertraline reduce the withdrawal-
induced hyperactivity of locus ceruleus neurons. We have demonstrated
previously that noribogaine elevates serotonin concentrations in brain by binding
to the 5-HT transporter (Table 3) (8). Dysphoric mood states associated with
opiate withdrawal may be a contributing factor for relapse, since addicts often
experience drug craving in conjunction with dysphoric mood states (20). An
action at the 5-HT transporter may explain the antidepressant effects seen
following ibogaine administration in human opiate-dependent patients (10).
Clinical studies have previously suggested that patients who abused opiates may
have been self-medicating their mood disorders, indicating a possible role for
endogenous opiates in major depression (25). Dysphoria and drug craving
reportedly persist in opiate addicts even after detoxfication from opiates has been
completed. Thus, noribogaine’s effects at multiple opioid receptors and the 5-HT
transporter may explain the easy transition following only a single dose of
ibogaine in humans following abrupt discontinuation of opiates. These
observations suggest that noribogaine may have potential efficacy for use as a
rapid opiate detoxification treatment strategy. Recognition of the different
components (autonomic changes and the objective signs versus subjective signs,
dysphoric mood, and drug craving) may suggest the need for a medication
strategy that targets multiple neurotransmitter systems for the treatment of opiate
withdrawal and for relapse prevention. The identification of noribogaine’s mix of
neurotransmitter receptors and neurotransporter binding sites provides additional
support for medications targeted to different aspects of the opiate withdrawal
syndrome.

Opiate agonist pharmacotherapy with buprenorphine is a new alternative to
methadone maintenance for the treatment of opiate dependence (20).
Noribogaine has some pharmacologic similarities to the mixed agonist-antagonist
analgesic buprenorphine. Buprenorphine and noribogaine both act as mu
agonists. Compared to buprenorphine’s high affinity partial agonist profile,
noribogaine has lower receptor affinity, but increased intrinsic activity over
buprenorphine as a mu agonist. Behavioral and physiological evidence suggest
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that buprenorphine has kappa antagonist effects in addition to its action as a
partial mu agonist. Noribogaine binds to kappa receptors, but acts as a partial
agonist (Table 3). Both drugs have a long duration of action due to the slow rates
of dissociation from opiate receptor sites. Thus, ibogaine’s ability to inhibit opiate
craving may be accounted for by the mixed mu- and kappa-opioid profile of the
active metabolite noribogaine.

XI. Conclusion and Future Directions

Pharmacological treatments for opiate dependence include detoxification
agents and maintenance agents. New experimental approaches have also been
tried to reduce the time it takes to complete the process of detoxification or to
further reduce persisting subjective reports of dysphoria and opiate craving.
Ibogaine treatment is a novel approach that has similarities with other detoxifi-
cation pharmacotherapies, including substitution with a longer-acting opiate (e.g.,
methadone or buprenorphine). However, ibogaine appears to be a prodrug with
the beneficial effects residing in the active metabolite noribogaine. Thus, it would
be useful to demonstrate that noribogaine alone is effective in detoxification of
heroin-dependent and methadone-maintained patients. If noribogaine alone is
safe and effective in open label studies, a randomized, double-blind study
comparing noribogaine to clonidine-naltrexone detoxification would be justified.
This clinical study would demonstrate whether noribogaine is more effective and
has fewer adverse hemodynamic effects. Based on its spectrum of pharmaco-
logical activities, we suggest that noribogaine should also be considered as an
alternative to methadone maintenance.

A pharmacological approach for the compliance problem has been the
development of depot formulations that might be injected as infrequently as once
a month. The long-acting pharmacokinetics of noribogaine suggests that the drug
may, in fact, persist in the body for weeks to months. Thus, future development
of depot noribogaine preparations may provide an optimal therapeutic approach
for treating intractable opiate abusers. Another approach would be to combine a
noribogaine taper with naltrexone. This approach may provide a means to shorten
the time needed to initiate opiate antagonist therapy. Previous studies have also
suggested the need for combination pharmacotherapies, such as antidepressants
with buprenorphine (20). Interestingly, noribogaine has a pharmacological profile
that includes actions on both serotonin and opiate systems in the brain. Although
not discussed in this report, ibogaine provides an approach for the treatment of
abuse of multiple substances including alcohol and cocaine. Many opiate-
dependent patients abuse multiple drugs and alcohol. Thus, ibogaine and its
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active metabolite noribogaine represent two additional pharmacological
treatments for opiate dependence. However, clinical studies are needed to
demonstrate whether they will become viable alternatives for treating opiate
dependence in the future. It remains to be seen if the politics surrounding this
controversial treatment approach will limit the promise for future development of
either ibogaine or noribogaine.
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